Noviembre 14, 15 y 16 , 2018 – UNMSM


Presentación


El “III Congreso Internacional de Optimización y Aplicaciones” que se desarrollara los días 14,15,16 de Noviembre del 2018, será realizado en las instalaciones de la facultad de Ciencias Matematicas en la Universidad Nacional Mayor de San Marcos Matemáticas.

Este congreso tendrá Plenarias, Ponencias, concursos de iniciación científica y comunicaciones para los tesistas y contará con la participación de dos investigadores internacionales brasileños invitados.

El objetivo fundamental del evento es difundir las investigaciones actuales en temas de optimización continua, convexa, dinámica, semidefinida aplicada a áreas de la economía, medicina, pesca y la gestión de recursos. También se busca promover la investigación científica a nivel de Pre y Post grado para fortalecer el área de optimización y en un futuro tener más publicaciones en esta área.

Speakers


Speakers contibutions:



Title                : Gradient Method for Optimization on Riemannian Manifolds with Lower Bounded Curvature

Author           : O. P. Ferreira,  M. S. Louzeiro, and L. F. Prudente

Affiliation     : Universidade  Federal de Goias, Brazil

Abstract: The gradient method for minimize a differentiable convex function on Riemannian manifolds with lower bounded sectional curvature is analyzed in this paper.  The analysis of  the method is presented  with three different finite procedures for determining the stepsize, namely, Lipschitz  stepsize,  adaptive stepsize  and  Armijo’s stepsize.   The first procedure requires that the objective function has Lipschitz continuous gradient, which is not necessary for the other approaches. Convergence of the whole sequence to a minimizer, without any level set boundedness assumption, is proved. Iteration-complexity bound for functions with Lipschitz continuous gradient is also presented. Numerical experiments are provided to illustrate the effectiveness of the method in this new setting and certify the obtained theoretical results.  In particular, we consider the problem of finding the Riemannian center of mass and the so-called Karcher’s mean. Our numerical experiences indicate that the adaptive stepsize is a promising scheme that is worth considering.


Title            : An approach on proximal point methods in the multiobjective setting

Author           : Glaydston de Carvalho Bento (Bento, G. C.)

Affiliation      : Federal University of Goias, Brazil

Abstract: In this talk, will be presented an approach on proximal point methods in the multiobjective setting. The main proposals and results already achieved in this direction will be presented. In particular, in the Riemannian context will be presented an optimality condition for multiobjective problems which allowed us to ensure that each cluster point (if any) of any sequence generated by the method is a Pareto critical point.


 

Venue


400

A FORO

14

EXPOSITORES

16

EXPOSICIONES

Sponsors